If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-72=0
a = 2; b = 5; c = -72;
Δ = b2-4ac
Δ = 52-4·2·(-72)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{601}}{2*2}=\frac{-5-\sqrt{601}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{601}}{2*2}=\frac{-5+\sqrt{601}}{4} $
| G(x)=0.7x-0.4 | | 12-x/2=-2 | | -x+52=3x+20 | | 5+3-(x-2)=8 | | x3+x2−17x+15=0 | | 3(2x-14)=8x-12 | | 14-3(2x+1=5-4x | | 6^(3x-4)=12 | | 4x+8x-2x=27-7 | | P={X/X^2+3x-54=0} | | 8^x+2=95 | | (x*0.07)+x=75 | | P={x/x²+3x-54=0} | | 180-x-60+180-x-60=360 | | 2(x-15)=-10 | | 10-3(2x+8)=14 | | 3(x-5)=x-23 | | 20=1.5x+9 | | 7-6y=y^2 | | -1.25x=4.375 | | 20^3x=72 | | 9x+7=6(x-2) | | 4-2m=6+4m | | -2(x-5)=x-23 | | X+2=2x-13 | | 2(x-60)=180 | | 4+10x=6x+2x | | -2.9(x-5)-2.7(x-4.2)=19.68 | | 1/4=16^2x-3 | | 0.75x+2.25=0.5(x+1.5) | | 400x^2=0 | | m^2-6=247 |